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Classical Coulomb systems at equilibrium, bounded by a plane dielectric wall,
are studied. A general two-point charge correlation function is considered. Valid
for any fixed position of one of the points, a new relation is found between the
algebraic tail of the correlation function along the wall and the dipole moment
of that function. The relation is tested first in the weak-coupling (Debye–
Hückel) limit, and afterwards, for the special case of a plain hard wall, on the
exactly solvable two-dimensional two-component plasma at coupling C=2, and
on the two-dimensional one-component plasma at an arbitrary even integer C.

KEY WORDS: Coulomb systems; plasma; surface properties; correlations; sum
rules.

1. INTRODUCTION AND SUMMARY

Near a plane wall impenetrable to the particles (hard wall), the charge
correlations of a classical (i.e., non-quantum) Coulomb system (plasma,
electrolyte, ...) at equilibrium have special features (see review of ref. 1). On
one hand, they have only an algebraic decay along the wall (while the bulk
charge correlations decay faster than any inverse power law), and their
asymptotic form obeys a simple sum rule. On the other hand, the charge
correlation function carries a dipole moment (while, in the bulk, there is no
such dipole just for symmetry reasons), and this dipole moment obeys
another simple sum rule. Some relation between algebraic tail and dipole



moment is expected: it is the asymmetry of the screening cloud of a particle
sitting near the wall which induces that long-range tail in the charge correla-
tion along the wall. In the present paper, we make this relation quantitative.

The general classical Coulomb systems under consideration consist of
s species a=1,..., s with the corresponding charges qa, plus perhaps a fixed
background of density n0 and charge density r0. Two cases are of particu-
lar interest: the one-component plasma (OCP) which corresponds to s=1
(q1=q), r0=−qn0 ] 0 and the two-component plasma (TCP) which cor-
responds to s=2 (q1=q, q2=−q), r0=n0=0. The presence of a solvent
is mimicked by embedding the system in a continuous medium of dielectric
constant E. The walls are made of a material of dielectric constant EW. The
particles (and the background if any) interact via the Coulomb potential
plus perhaps some short-range forces. For a n-dimensional system (in what
follows, we will restrict ourselves to dimensions n=2, 3), the Coulomb
potential in vacuum at position r, induced by a unit charge at the origin,
defined as the solution of the Poisson equation, is

v(r)=˛ − ln 1 |r|
r0
2 , n=2

1
|r|

, n=3
(1.1)

where r0 is a length scale. It should be remembered that, when n=2, the
system, with logarithmic interactions, is expected to mimic some general
properties of three-dimensional Coulomb systems, but does not represent
‘‘real’’ charged particles confined to a plane. For two- and more-compo-
nent plasmas containing pointlike particles, the singularity of v(r) at the
origin prevents the thermodynamic stability against the collapse of positive-
negative pairs of charges: in two dimensions for small enough tempera-
tures, in three dimensions for any temperature. In such cases, the above-
mentioned short-range forces (e.g., hard cores) are needed, without effect
on the results of this paper.

We now define some notations. The microscopic densities of charge
and of particles of species a are given respectively by

r̂(r)=r0+C
a

qa n̂a(r), n̂a(r)=C
i
da, aid(r− ri) (1.2)

where i indexes the charged particles. The thermal average at the inverse
temperature b=1/(kT) will be denoted by O · · ·P. At one-particle level,

r(r)=Or̂(r)P, na(r)=On̂a(r)P (1.3)
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At two-particle level, one introduces the two-body densities

nab(r, rŒ)=7 C
i ] j
da, aidb, ajd(r− ri) d(rŒ− rj)8 (1.4a)

and the corresponding Ursell functions

Uab(r, rŒ)=nab(r, rŒ)−na(r) nb(rŒ) (1.4b)

The truncated charge-charge correlation (structure function) reads

S(r, rŒ)=Or̂(r) r̂(rŒ)PT=Or̂(r) r̂(rŒ)P−Or̂(r)POr̂(rŒ)P (1.5)

In the case of the OCP, S takes the form

S(r, rŒ)=q2[U(r, rŒ)+n(r) d(r− rŒ)] (1.6)

For our purpose, it is useful to introduce ‘‘conditional’’ densities. Let
na(r | Q, R) be the density of a-particles at point r when there is a charge Q
fixed at R. Evidently, if b=1,..., s belongs to the set of charged species
forming the plasma, it holds

na(r | qb, rŒ) nb(rŒ)=nab(r, rŒ) (1.7)

The excess charge density at point r, due to the presence of the charge Q
fixed at R, then is

rex(r | Q, R)=3C
a

qa[na(r | Q, R)−na(r)]4+Qd(r−R) (1.8)

In terms of rex, S is expressible as follows

S(r, rŒ)=C
b

qbnb(rŒ) rex(r | qb, rŒ)

=C
b

qbnb(r) rex(rŒ | qb, r) (1.9)

Here, we consider a semi-infinite Coulomb system which occupies the
half-space x > 0 filled with a medium of dielectric constant E; we denote by
y the set of (n−1) coordinates normal to x. The plane at x=0 is a hard
wall impenetrable to the particles. It may be charged by a uniform surface
charge density s. The half-space x < 0 is assumed to be filled with a
material of dielectric constant EW. As a consequence, a particle of charge q
at the point r=(x, y) has an electric image of charge [(E− EW)/(E+EW)] q
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at the point r*=(−x, y). (2) Due to invariance with respect to translations
along the wall and rotations around the x direction,

S(r, rŒ)=S(x, xŒ; |y−yŒ|)=S(xŒ, x; |y−yŒ|) (1.10)

The cases EW=. (ideal conductor wall) and EW=0 (ideal dielectric
wall) are special and will not be considered here. For finite EW, the charge
structure factor S(x, xŒ; |y−yŒ|) has several general properties: It obeys a
condition of electroneutrality

F
.

0
dxŒ F dy S(x, xŒ; y)=0 (1.11)

The Carnie and Chan generalization to nonuniform fluids of the second-
moment Stillinger–Lovett condition (3) results for the present geometry in
the dipole sum rule (4, 5)

F
.

0
dx F

.

0
dxŒ F dy xŒS(x, xŒ; y)=−

E

2bp(n−1)
, n=2, 3 (1.12)

The charge-charge correlations decay slowly along the wall. (6, 7) One expects
an asymptotic power-law behavior

S(x, xŒ; y) 4
f(x, xŒ)

|y|n
, |y|Q. (1.13)

where f(x, xŒ), which as a function of x or xŒ has a fast decay away from
the wall, obeys the sum rule (8, 9)

F
.

0
dx F

.

0
dxŒ f(x, xŒ)=−

EW

2b[p(n−1)]2
, n=2, 3 (1.14)

In this work, we establish a general relation between the structure
function S and its asymptotic characteristics f. Namely, for any value of
x \ 0 it is proven that

F
.

0
dxŒ F dy xŒS(x, xŒ; y)=

E

EW
p(n−1) F

.

0
dxŒ f(x, xŒ), n=2, 3

(1.15)

The lhs of (1.15) is a dipole moment (in its expression, due to the electro-
neutrality property (1.11), xŒ can be replaced by xŒ−x). In contrast with
the sum rules (1.12) and (1.14), the relation (1.15) holds for a given x,
without integration over it. However, when both sides of (1.15) are

196 Jancovici and Šamaj



integrated over x from 0 to ., it is seen that the sum rule (1.14) for f is a
direct consequence of the dipole sum rule (1.12), and vice versa.

More generally, it can be assumed that the excess charge density (1.8)
also obeys a condition of electroneutrality similar to (1.11) and has an
asymptotic behavior similar to (1.13)

rex(r | Q, R) 4
F(x | Q, X)

|y|n
, |y|Q. (1.16)

where we have chosen R=(X, 0), with F as a function of x or X having a
fast decay away from the wall. Under these assumptions, we derive the
relation

F dr xrex(r | Q, R)=
E

EW
p(n−1) F

.

0
dx F(x | Q, X), n=2, 3 (1.17)

valid for an arbitrary Q. Here too, in the lhs of (1.17), x can be replaced by
x−X. On account of (1.9), this more general relation immediately leads to
(1.15) with f(x, X)=;b qbnb(X) F(x | qb, X).

The paper is organized as follows. Section 2 is devoted to a general
derivation of the basic result (1.17). The validity of this result is checked in
the Debye–Hückel limit bQ 0 (Section 3) and in two dimensions at the
special value of the coupling constant C=bq2=2, for both the TCP (10)

(Section 4) and the OCP (7) (Section 5) in contact with a plain hard wall
(EW=E=1). In the case of the two-dimensional OCP, we were able to
document the validity of formula (1.15) even for an arbitrary even integer
C by a non-trivial application of sum rules derived in ref. 11 using the
technique of Grassmann variables.

2. GENERAL DERIVATION

In this section, the abbreviated notation rex(r) will be used for the
excess charge distribution rex(r | Q, R) defined in (1.8), with R=(X, 0).
For simplicity, we first consider the case when there are no dielectric media
(E=EW=1). Our derivation of (1.17) is based on the assumption that there
are good screening properties in the bulk: the charge distribution rex(r) is
localized near the wall and the electric potential f(r) it creates in the
plasma at a macroscopic distance from the wall vanishes. This electric
potential is

f(r)=F drŒ v(r− rŒ) rex(rŒ) (2.1)
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where v(r− rŒ) is the Coulomb interaction (1.1). When x is large enough for
the charge distribution rex(r) to be negligible, v(r− rŒ) can be expanded in
powers of xŒ (with the notation r=(x, y), etc...), and one obtains

f(r)=F dyŒ v(x, y−yŒ) F
.

0
dxŒ rex(xŒ, yŒ)

−F dyŒ
“v(x, y−yŒ)

“x
F
.

0
dxŒ xŒrex(xŒ, yŒ)+· · · (2.2)

where the higher-order terms of the expansion involve higher-order deriva-
tives of v with respect to x.

We shall now consider the Fourier transform of (2.2) with respect to y,
using the convolution theorem. In (2.2), let us define

sex(yŒ)=F
.

0
dxŒ rex(xŒ, yŒ) (2.3)

(from a macroscopic point of view, sex(yŒ) can be regarded as a surface
charge density). The total charge > dy sex(y) vanishes, as required by the
perfect screening of Q. Also, it results from (1.16) that sex(y) has the
asymptotic behavior

sex(y) 4
A
|y|n

(2.4)

where

A=F
.

0
dx F(x | Q, X) (2.5)

Therefore, the Fourier transform of sex(y) with respect to y has the small
wave number behavior

s̃ex(l)=F dy exp(−il ·y) sex(y) 4 −(n−1) pA |l | (2.6)

The Fourier transform of v(x, y) is (n−1) p exp(−|l | x)/|l | and thus the
Fourier transform of “v/“x is −(n−1) p exp(−|l | x) and so on for higher-
order derivatives of v. Using these transforms in the convolution theorem
gives the Fourier transform f̃(x, l) of (2.2), which, at l=0, is found to be

f̃(x, 0)=(n−1) p[−(n−1) pA+P] (2.7)
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where

P=F dr xrex(r) (2.8)

Since x has been assumed to be large, f̃(x, 0)=0 and (2.7) results into

−(n−1) pA+P=0 (2.9)

On account of (2.5) and (2.8), (2.9) is (1.17) in the special case (E=EW=1).
The generalization to other values of the dielectric constants is

straightforward. In (2.2), one must add to rex(xŒ, yŒ) its electric image (2)

[(E− EW)/(E+EW)] rex(−xŒ, yŒ). This is equivalent to keeping the integra-
tion range (0,.) for xŒ, but multiplying the first integral in (2.2) by
2E/(E+EW) and the second integral by 2EW/(E+EW). This gives the general
form of (1.17).

3. DEBYE–HÜCKEL LIMIT

We check the relation (1.17) for the general Coulomb system defined
in the Introduction, along a plane wall, in the weak coupling limit bQ 0
(Debye–Hückel limit). It is convenient to introduce the Fourier transform
with respect to y of the excess charge density (1.8)

r̃exQ (x, X, |l |)=F dy exp(−il ·y) rex(r | Q, R) (3.1)

One defines a bulk inverse Debye length o by

o2=2p(n−1) b 1C
a

q2a na 2;E (3.2)

where na is the bulk density of species a. A minor generalization of the
calculation in ref. 7 gives r̃exQ as a sum of its bulk Debye–Hückel form plus
a ‘‘reflected’’ term:

r̃exQ (x, X, l)=−
Qo2

2(o2+l2)1/2
3exp[−(o2+l2)1/2 |x−X|]

+
E(o2+l2)1/2− EW |l |
E(o2+l2)1/2+EW |l |

exp[−(o2+l2)1/2 (x+X)]4

+Qd(x−X) (3.3)
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The asymptotic behavior of rex(y) is determined by the kink of
its Fourier transform r̃ex(l) at |l |=0, Q(EW/E) exp[−o(x+X)] |l | (in
the sense of distributions, the inverse Fourier transform of |l | is
−1/[(n−1) p |y|n] ). One does find the asymptotic behavior (1.16) with

F(x | Q, X)=−
QEW

p(n−1) E
exp[−o(x+X)] (3.4)

Therefore

F
.

0
dx F(x | Q, X)=−

QEW
p(n−1) oE

exp(−oX) (3.5)

For finding the dipole moment associated to rex(r | Q, R), one first
notes that the integral of rex over y is the Fourier transform (3.3) taken at
l=0. The integral over x is easily computed, and one checks that (1.17) is
obeyed.

4. TWO-DIMENSIONAL TWO-COMPONENT PLASMA

We now check (1.17) on the two-dimensional TCP at the special value
of the coupling constant C=bq2=2, in the case of a plain rectilinear hard
wall. Without loss of generality, we shall take the charges ±q as ±1. The
corresponding correlation functions are known. (10) We would like to con-
sider the excess charge density (1.8) in the special case Q=q=1, i.e., when
the particle fixed at R=(X, 0) is one of the particles (say a positive one) of
the system. Although, at C=2, for a given fugacity, the densities diverge,
the Ursell functions are finite. Therefore, instead of rex(r|+1, R), we con-
sider the finite quantity proportional to its non-self part

n+(R)[rex(r|+1, R)−Qd(r−R)]=U++(r, R)−U−+(r, R) (4.1)

(Us1 s2 was called r (2) Ts1 s2 in ref. 10). In that same reference, the possible
surface charge density carried by the wall was chosen as −s and we shall
keep this choice in the present section.

The model has a rescaled fugacity m [which has the dimension of
an inverse length such that the bulk correlation length is 1/(2m)]. The
Ursell functions in (4.1) are expressible in terms of auxiliary functions
gs+(x, X, y), where s=± , as3

3 We use the symmetry relations (2.15) of ref. 10, the first one of which is misprinted: its rhs
should be replaced by its complex conjugate.

Us+(r, R)=−sm2 |gs+(x, X, y)|2 (4.2)
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The g functions are given by their Fourier transforms

g̃s+(x, X, l)=F
.

−.
dy exp(−ily) gs+(x, X, y) (4.3)

which are

g̃++(x, X, l)=
m
2k

{exp(−k |x−X|)− exp[−k(x+X)]}, l < 0 (4.4a)

g̃++(x, X, l)=
m
2k
3exp(−k |x−X|)+

k−l+2ps
k+l−2ps

exp[−k(x+X)]4 ,

l > 0 (4.4b)

g̃−+(x, X, l)=
1
2k

{[l−2ps+k sign(x−X)] exp(−k |x−X|)

−(k+l−2ps) exp[−k(x+X)]}, l < 0 (4.4c)

g̃−+(x, X, l)=
1
2k

{[l−2ps+k sign(x−X)] exp(−k |x−X|)

+(k−l+2ps) exp[−k(x+X)]}, l > 0 (4.4d)

where k=[m2+(l−2ps)2]1/2.
The asymptotic behavior of the g(y) functions is governed by the dis-

continuity of their Fourier transforms g̃(l) at l=0. In the sense of distri-
butions, the inverse Fourier transform of sign(l) is i/(py). Thus,

g++(x, X, y) 4
im

2p(k0−2ps) y
exp[−k0(x+X)] (4.5a)

g−+(x, X, y) 4
i

2py
exp[−k0(x+X)] (4.5b)

where k0=[m2+(2ps)2]1/2. Using (4.5) in (4.2) and (4.1) gives

U++(r, R)−U−+(r, R) 4
F(x | X)

y2
, |y|Q. (4.6)

Charge Correlations in a Coulomb System Along a Plane Wall 201



where

F(x | X)=−
k0
2p2

(k0+2ps) exp[−2k0(x+X)] (4.7)

Therefore

F
.

0
dx F(x | X)=−

1
4p2

(k0+2ps) exp(−2k0X) (4.8)

For computing the dipole moment

P=F
.

0
dx(x−X) F

.

−.
dy[U++(r, R)−U−+(r, R)] (4.9)

one first considers the integral over y. With regard to (4.2) and (4.3),

F
.

−.
dy[U++(r, R)−U−+(r, R)]

=−
m2

2p
F
.

−.
dl{[g̃++(x, X, l)]2+[g̃−+(x, X, l)]2} (4.10)

In the special case s=0, using (4.4) in (4.10) gives for the dipole moment,
after some calculation,

P=−
m2

2p
F
.

0
dx (x−X)

×F
.

0
dl 3exp(−2k |x−X|)+

k−l
m

exp[−2k(x+X)]4 , s=0
(4.11)

Performing the integral over x before the one over l gives

P=−
m
4p

exp(−2mX), s=0 (4.12)

Comparing (4.8) when s=0 with (4.12), one checks that (1.17) is obeyed
(here E=EW=1).
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For checking (1.17) in the general case s ] 0, it is enough (and easier)
to check that the derivatives with respect to 2ps of both its sides are equal.
From (4.8) one obtains

d
d(2ps)

F
.

0
dx F(x | X)=−

1
4p2
11+2ps

k0
2(1−4psX) exp(−2k0X)

(4.13)

On the other hand, the integrand in the rhs of (4.10) depends on l and s
only through the combination lŒ=l−2ps, and its analytic form changes
at lŒ=−2ps from some function f1(lŒ) to some other function f2(lŒ), as
apparent in (4.4). Therefore, the corresponding integral can be rewritten in
the form

I=F
−2ps

−.
dlŒ f1(lŒ)+F

.

−2ps
dlŒ f2(lŒ) (4.14)

and one obtains

dI
d(2ps)

=−f1(2ps)+f2(2ps) (4.15)

This gives d/d(2ps) of the integral over y in (4.9). Then, one computes the
integral over x, with the result that dP/d(2ps) is p times (4.13). This
completes the check of (1.17) on the present model.

5. TWO-DIMENSIONAL ONE-COMPONENT PLASMA

We consider the two-dimensional OCP in contact with a plain hard
wall (EW=E=1), localized at x=0 and charged by a ‘‘surface’’ charge
density qs, first at the coupling constant C=bq2=2, then for any even
integer C (s=0). We work in units such that pn0=1, where n0 is the
background density. We intend to check the relation (1.15).

5.1. C=2

The one-body density at a distance x from the wall is given by (see
Eq. (2.16) of ref. 7)

n(x)=n0
2

`p
F
.

−ps`2

exp[−(t−x`2)2]

1+F(t)
dt (5.1)
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where

F(t)=
2

`p
F
t

0
exp(−u2) du (5.2)

is the error function. The two-body Ursell function (called r (2)T in Eq. (2.18)
of ref. 7) is

U(x, xŒ; |y−yŒ|)

=−n20 exp[−(x−xŒ)2]

× : 2
`p

F
.

−ps`2

exp{−[t−(x+xŒ)/`2]2− it(y−yŒ)`2}

1+F(t)
dt :

2

(5.3)

The structure function S is expressed in terms of n and U in formula (1.6).
The asymptotic f-function takes the form (see Eq. (2.21) of ref. 7)

f(x, xŒ)=−n20q
2 2
p

exp[−2(x+ps)2−2(xŒ+ps)2]

[1+F(−ps`2)]2
(5.4)

It is easy to show that

p

q2
F
.

0
dxŒ f(x, xŒ)=−

1

`2 p3/2
exp[−2(x+ps)2]

1+F(−ps`2)
(5.5)

On the other hand, performing first the integration over the y-coordinate,
one obtains

1
q2

F
.

0
dxŒ F

.

−.
dy xŒS(x, xŒ; y)

=x
2
p3/2

F
.

−ps`2

exp[−(t−x`2)2]

1+F(t)
dt

−
8

`2 p2
exp(−2x2) F

.

−ps`2

exp(−2t2+2`2 tx)

[1+F(t)]2
I(t) dt (5.6)

where

I(t)=F
.

0
dxŒ xŒ exp(−2xŒ2+2`2 txŒ)

=
1
4
+
`p

4
t[1+F(t)] exp(t2) (5.7)
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After simple algebra, one arrives at

1
q2

F
.

0
dxŒ F

.

−.
dy xŒS(x, xŒ; y)=J1+J2 (5.8)

where

J1=
1

`2 p3/2
F
.

−ps`2

dt
1

1+F(t)
“

“t
exp[−(t−x`2)2] (5.9a)

J2=−
2

`2 p2
F
.

−ps`2

dt
exp(−t2)

[1+F(t)]2
exp[−(t−x`2)2] (5.9b)

Using the equality

exp(−t2)
[1+F(t)]2

=−
`p

2

“

“t
5 1
1+F(t)
6 (5.10)

in J2, the consequent integration per partes implies

J2=−
1

`2 p3/2
exp[−2(x+ps)2]

1+F(−ps`2)
−J1 (5.11)

Inserting J2 into (5.8) and comparing with (5.5) one gets the expected
relation (1.15) with EW=E and n=2.

5.2. C=Even Integer

Let the OCP with logarithmic interactions be confined to a compact
two-dimensional domain V. The positively oriented contour enclosing the
domain V, denoted by “V, is defined parametrically as x=X(j), y=Y(j);
j0 [ j [ j1. For example, the circle enclosing the disk of radius R centered
at the origin admits the parametrization X(j)=R cos j, Y(j)=R sin j;
0 [ j [ 2p. Integrals over the V-domain can be expressed in terms of the
“V-contour integrals according to the rule

F
V

1“Q
“x

−
“P
“y
2 dx dy=F

“V
(P dx+Q dy) (5.12a)
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where

F
“V

P(x, y) dx=F
j1

j0

dj P[X(j), Y(j)] XŒ(j)

F
“V

Q(x, y) dy=F
j1

j0

dj Q[X(j), Y(j)] YŒ(j)

(5.12b)

The neutralizing background of uniform density n0 creates the one-particle
potential −qn0v0(r) where

v0(r)=F
V
d2rŒ v(|r− rŒ|) (5.13)

The corresponding electric field is −qn0E0(r) where

E0(r)=Ex0(r) x̂+Ey0(r) ŷ=−Nv0(r) (5.14)

with x̂ and ŷ being unit vectors in the x and y directions. For the half-plane
of interest,

v0(r)=const−px2; Ex0=2px, Ey0=0 (5.15)

For a disk of radius R centered at the origin 0,

v0(r)=const−pr2/2; Ex0=px, Ey0=py (5.16)

By mapping the two-dimensional OCP onto a discrete one-dimensional
Grassmann field theory for the coupling constant C= even integer, two
new kinds of sum rules for the structure function S were established in
ref. 11 for an arbitrarily shaped V-domain. The first sum rule reads (see
formulae (61a,b) of ref. 11 where U is called nT)

−bn0 F
V
d2rŒ Ex0(rŒ) S(r, rŒ)=

“n(r)
“x

+F
V
d2rŒ

“

“xŒ
U(r, rŒ) (5.17a)

−bn0 F
V
d2rŒ Ey0(rŒ) S(r, rŒ)=

“n(r)
“y

+F
V
d2rŒ

“

“yŒ
U(r, rŒ) (5.17b)
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With the aid of the prescription (5.12), the last terms on the rhs of these
sum rules can be rewritten as follows

F
V
d2rŒ

“

“xŒ
U(r, rŒ)=F

j1

j0

dj U[r; (X, Y)] YŒ (5.18a)

F
V
d2rŒ

“

“yŒ
U(r, rŒ)=−F

j1

j0

dj U[r; (X, Y)] XŒ (5.18b)

The second sum rule reads (see formula (45a) of ref. 11)

−bn0 F
V
d2rŒ[rŒ ·E0(rŒ)] S(r, rŒ)

=2n(r)+r ·Nn(r)+F
j1

j0

dj U[r; (X, Y)](XYŒ−XŒY) (5.19)

For the half-plane, since the Ursell function U(r, rŒ) goes to zero at
large |r− rŒ|, Eq. (5.17a) yields

−2pbn0 F
.

0
dxŒ F

.

−.
dy xŒS(x, xŒ; y)=

dn(x)
dx

−F
.

−.
dy U(x, 0; y) (5.20)

This is an OCP generalization of the WLMB equations, (12, 13) which were
originally derived for neutral systems. It is trivial to obtain the dipole sum
rule (1.12) by integrating both sides of (5.20) over x from 0 to ., then
taking into account that limxQ. n(x)=n0, and finally considering the
electroneutrality condition (1.11) at x=0.

For a disk of radius R, the addition of Eq. (5.17a) multiplied by x and
Eq. (5.17b) multiplied by y, with the substitutions (5.18), leads to

−pbn0 F
disk

d2rŒ (r · rŒ) S(r, rŒ)=r
dn(r)
dr

+F
2p

0
djŒ (r ·RŒ) U(r, RŒ) (5.21)

where, in polar coordinates, RŒ=(R, jŒ). Eq. (5.19) takes the form

−pbn0 F
disk

d2rŒ |rŒ|2 S(r, rŒ)=2n(r)+r
dn(r)
dr

+R2 F
2p

0
djŒ U(r, RŒ) (5.22)
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Since |r− rŒ|2=|r|2+|rŒ|2−2r · rŒ, the combination of relations (5.21) and
(5.22) with the electroneutrality condition (1.11) results in

−pbn0 F
disk

d2rŒ |r− rŒ|2 S(r, rŒ)

=2n(r)−r
dn(r)
dr

−F
2p

0
djŒ (2r ·RŒ−R2) U(r, RŒ) (5.23)

Let us move the origin to the disk boundary by introducing x=R−r.
Equation (5.23) becomes

−pbn0 F
2p

0
djŒ F

R

0
dxŒ(R−xŒ) |r− rŒ|2 S(r, rŒ)

=2n(x)+(R−x)
dn(x)
dx

−F
2p

0
djŒ[2R(R−x) cos(jŒ−j)−R2] U(r, RŒ)

(5.24)

We now take the limit RQ.. The lhs of (5.24) is dominated by the large
values of |r− rŒ|. The asymptotic behaviour (1.13) is equivalent to

|r− rŒ|2 S(r, rŒ) 4 f(x, xŒ)+· · · (5.25)

where the higher-order terms vanish for large |r− rŒ|. Substituting jŒQ
y=R(jŒ−j) on the rhs of (5.24) and collecting all terms of order R, one
finally arrives at the equation

−2p2bn0 F
.

0
dxŒ f(x, xŒ)=

dn(x)
dx

−F
.

−.
dy U(x, 0; y) (5.26)

formulated for the half-plane. This equation is exactly of the form (5.20),
with the expected identification (1.15) for the case under consideration
E=EW=1 and n=2.

6. CONCLUSION

We have derived a general relation between the asymptotic behavior of
a charge correlation function along a plane wall and the dipole moment of
that correlation function, in the general form (1.17). In the particular case
of the charge structure factor, that relation becomes (1.15).

In those exactly solvable models for which the two-body correlations
are known, finding their asymptotic behavior is often easier than directly
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computing the dipole moment. However, in the present paper, we did
compute this dipole moment, for the sake of checking the general relation.

The relation (1.15) was first observed in the special case of a two-
dimensional one-component plasma, as one more application of a mapping
onto a Grassmann field theory. (11) Afterwards, we realized that the relation
could be derived in general for any Coulomb system.
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